Yesterday I gave a talk on Reproducing Kernel Hilbert Spaces (RKHSs) in machine learning, in the Uncertainty Quantification seminar organized by Tim Sullivan. In earlier meetings, Tim himself an Han Cheng Lie gave talks on Vladimir Bogachevs use of RKHSs in his book on Gaussian Measures, which does not seem to mention where the “Reproducing Kernel” part comes from. Which is why I decided to start out with and concentrate on kernels. I pointed out the equivalence of a very simple classification algorithm using the dot product in an RKHS with the usage of KDEs for classification (at least for a certain class of positive definite kernels that are also densities).
You can take a look at my Jupyter Notebook online or download it from Github.